1	(a)	Alk	anes and alkenes are examples of hydrocarbons.	
		(i)	What is meant by the term <i>hydrocarbon</i> ?	
		(ii)	Give the general formula of straight-chain	
			alkanes,	
			alkenes.	 [2]
	(b)	Ас	ompound X contains carbon, hydrogen and oxygen only.	
		X c ma	ontains 54.54% of carbon by mass, 9.09% of hydrogen by mass and 36.37% of oxygen ss.	by
		(i)	Calculate the empirical formula of compound X.	
				[2]
		(ii)	Compound X has a relative molecular mass of 88.	L—J
		` ,	Deduce the molecular formula of compound X.	

(c)	An ester has the molecular formula $C_3H_6O_2$.
	Name and give the structural formulae of two esters with the molecular formula C ₃ H ₆ O ₂ .

name of ester	
structural formula	

(d) Name the ester produced from the reaction of propanoic acid and methanol.

(e) A polyester is represented by the structure shown.

(i) What type of polymerisation is used for the production of polyesters?

(ii) Which simple molecule is removed when the polyester is formed?

[1]

(iii) Complete the diagrams below to show the structures of the monomers used to produce the polyester. Show all atoms and bonds.

[2]

[4]

[Total: 16]

	$2AgBr \rightarrow 2Ag + Br_2$ cream black
	step 1 $2Br^- \rightarrow Br_2 + 2e^-$
	step 2 Ag $^+$ + e $^ \rightarrow$ Ag
(i)	Which step is reduction? Explain your answer.
(ii)	Which ion is the oxidising agent? Explain your answer.
	piece of white paper was coated with silver bromide and exposed to the light. Sections of per were covered as shown in the diagram.
	per were covered as shown in the diagram. paper coated with silver bromide
	per were covered as shown in the diagram. paper coated with
	per were covered as shown in the diagram. paper coated with silver bromide
	per were covered as shown in the diagram. paper coated with silver bromide not covered covered covered

car	btosynthesis is another example of a photochemical reaction. Green plants can make simple bohydrates, such as glucose. These can polymerise to make more complex carbohydrates, th as starch.
(i)	Write a word equation for photosynthesis.
	[2]
(ii)	Name the substance which is responsible for the colour in green plants and is essential for photosynthesis.
	[1]
(iii)	The structural formula of glucose can be represented by H—O——O—H.
	Draw part of the structural formula of starch which contains two glucose units.
	[2]
(iv)	Living organisms need carbohydrates for respiration.
	What is meant by respiration?
	[1]
	[Total: 12]

(a)	A co	ompound X contains 82.76% of carbon by mass and 17.24% of hydrogen by mass.	
	(i)	Calculate the empirical formula of compound X .	
			[2]
((ii)	Compound X has a relative molecular mass of 58.	
		Deduce the molecular formula of compound X .	
			[2]
(b)	Alke	enes are unsaturated hydrocarbons.	
	(i)	State the general formula of alkenes.	[1]
((ii)	State the empirical formula of alkenes.	ניו
			[1]
(c)		at is meant by the term unsaturated hydrocarbon?	
	uns	aturated	
	hya	rocarbon	
			[2]

(d)	Des	scribe a test that would distinguish between saturated and unsaturated hydrocarbons.	
	rea	gent	
	obs	servation (saturated hydrocarbon)	
	obs	servation (unsaturated hydrocarbon)r	 3]
		ι	၁၂
(e)	Add	dition polymers can be made from alkenes. The diagram shows part of an addition polyme	∍r.
		$\begin{array}{c ccccc} & C_2H_5 & H & & C_2H_5 & H \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & &$	
	(i)	Draw a circle on the diagram to show one repeat unit in this polymer.	1]
	(ii)	Give the structure and the name of the monomer used to make this polymer.	
		structure	

name[2]

(iii) Give the structure of an isomer of the alkene in (e)(ii).

[1]

[Total: 15]

- **4** Esters, polyesters and fats all contain the ester linkage.
 - (a) Esters can be made from alcohols and carboxylic acids. For example, the ester ethyl ethanoate can be made by the following reaction.

(i) Name the carboxylic acid and the alcohol from which the following ester could be made.

- **(b)** The following two monomers can form a polyester.

Draw the structural formula of this polyester. Include two ester linkages.

(c)	Fat	s and vegetable oils are esters. The formulae	of two examples of natural esters are give	Δr
(C)	bel		or two examples of flatural esters are give	CI
		$CH_2 - CO_2 - C_{17}H_{33}$	CH ₂ —CO ₂ —C ₁₇ H ₃₅	
		$\begin{array}{c} CH_2 \textcolor{red}{\longleftarrow} CO_2 \textcolor{red}{\longleftarrow} C_{17} H_{33} \\ \\ CH \textcolor{red}{\longleftarrow} CO_2 \textcolor{red}{\longleftarrow} C_{17} H_{33} \\ \\ CH_2 \textcolor{red}{\longleftarrow} CO_2 \textcolor{red}{\longleftarrow} C_{17} H_{33} \end{array}$	CH_{2} — CO_{2} — $C_{17}H_{35}$ CH — CO_{2} — $C_{17}H_{35}$ CH_{2} — CO_{2} — $C_{17}H_{35}$	
		CH_{2} CO_{2} $C_{17}H_{33}$	CH_{2} — CO_{2} — $C_{17}H_{35}$	
		ester 1	ester 2	
	(i)	One ester is saturated, the other is unsaturated. Describe a test to distinguish between them.	ed.	
		test		
		result with unsaturated ester		
		result with saturated ester		
	(ii)	Deduce which one of the above esters is uns		[3]
				[2]
((iii)	Both esters are hydrolysed by boiling with aquivalent types of compound are formed?	ueous sodium hydroxide.	

...... and [2]

[Total: 17]

5	(a)	Biol	ogical catalysts produced by microbes cause food to deteriorate and decay.
		(i)	What is the name of these biological catalysts?
			[1]
		(ii)	Freezing does not kill the microbes. Suggest why freezing is still a very effective way of preserving food.
			[2]
	(b)	Pea	seeds grow in pods on pea plants.
		Give read	shly picked pea seeds contain a sugar. The sugar can form a polymer. The structural formula of the polymer and name the other product of this polymerisation ention. The sugar can form a polymer. The sugar can form a polymer. The structural formula of the polymer and name the other product of this polymerisation ention. The sugar can form a polymer. The sugar can form a polymer. The structural formula of the polymer and name the other product of this polymerisation ention. The sugar can form a polymer. The sugar can form a polymer can form a polymer. The sugar can form a polymer can form a poly
		stru	ctural formula of the polymer
		othe	er product[3]

(c)	Describe how the pea plant makes a sugar such as glucose.
	[3]
	[Total: 9]